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1 Introduction

The fast-neutron hodoscope at the Transient Reactor Test Facility has been used to detect

fuel motion within test samples inserted in the center of the reactor core. The hodoscope

system was been built to support nuclear reactor safety testing by providing a mechanism to

detect when fuel motion is induced under simulated accident conditions. Optical detection

methods cannot be used due to opacity of fuel capsules and pressure vessel walls. However,

those materials are transparent to fast neutrons leaving the test fuel(s). The hodoscope

uses collimators and two sets of detectors located outside the reactor core for fast neutron

measurements. Thus, it relies on fast neutrons born in the test sample to travel significant

distances ( 3m) through air to reach the detector. The detector configurat is illustrated in

Fig. 1.

However, this quite simple means of experiment visualization presents a challenge to most

neutron transport methods. Even high order deterministic methods are limited due to angu-

lar discretization issues and ray effects; the number of discrete angles required to overcome

this problem is prohibitively large. On the other hand, Monte Carlo methods require un-

reasonable amounts of time to obtain adqueate statistical responses at the location of the

hodoscope detectors, unless a biasing technique is used. Other approaches must be taken

to better simulate neutron streaming in the hodoscope. Note that such a treatment is not

necessary in TREAT core transient modeling; other approaches have been developed to

account for streaming effects. [1]

This report reviews uncollided flux techniques (first and last collision methods) to be imple-

mented in the SN solver of the Rattlesnake code in order to mitigate ray effects in modeling

the TREAT reactor+hodoscope system. Angular discretization techniques (SN and PN) for

the transport equation are notoriously poor at capturing accurately streaming effects. The

uncollided component of the angular flux solution is the most anisotropic part and it can

be difficult for discrete-ordinate methods to accurately represent; this phenomena is well-

known and termed “ray effects”. However, it has long been recognized that an analytical

or semi-analytical treatment of the uncollided flux, coupled with a discrete-ordinate treat-

ment of the collided flux, can yield dramatic improvements in accuracy and computational

efficiency. In this report, we present an algorithm for semi-analytical calculation of the

uncollided flux. The algorithm seeks to compute

1. The existing uncollided flux at each point in a collect of point on the surface of

the problem domain, with the angular flux reported for each “source point”. The

direction is from the source point to the surface point. The source points are chosen
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Figure 1: Plan and elevation views of a cross-section of the reactor, showing the relative

orientation of the core, a test item, reactor structural materials, and components of the

1.2-m collimator hodoscope at TREAT [2].
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to be spatial quadrature points that integrate the source volume.

2. Spatial and angular distributions of the uncollided flux in every cell in the problem.

These provide all of the information necessary to form the first-collision source in

each cell.

The proposed algorithm is tailored for parallel efficiency given a spatial domain decompo-

sition.

1.1 Basic Approach

For simplicity, we describe the uncollided flux technique using a single-speed description.

Generalization to multigroup is straightforward. We recall the one-group transport equation

below:

�Ω ·�∇Ψ(�r,�Ω)+σt(�r)Ψ(�r,�Ω) = ∑
�

2�+1

4π
σs,�(�r)

�

∑
m=−�

Φ�,m(�r)Y�,m(�Ω)+q(�r,�Ω) , (1)

where Ψ(�r,�Ω) is the angular flux at position�r and in direction �Ω, Y�,m(�Ω) is the spherical

harmonic function of degree � and order m, Φ�,m is the flux moment of degree � and order

m
Φ�,m(�r) =

∫
4π

dΩΨ(�r,�Ω)Y�,m(�Ω) .

It helps to introduce an operator notation for brevity:

LΨ = HΨ+q . (2)

where L is the streaming and total interaction operator and H the scattering operator. Typi-

cally, the transport equation is solved iteratively (index k)

LΨ(k+1) = HΨ(k) +q . (3)

Let us now introduce a decomposition of the angular flux into collided and uncollided

components:

Ψ = Ψu +Ψc

Then, Equation 2 can be re-cast as

LRT Ψu = q (4a)
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LSN Ψc = HΨc +HΨu (4b)

where we have emphasized how the transport operator L will be solved in each case. The

subscript RT denotes ray-tracing while SN stands for discrete-ordinate techniques.

1.1.1 Uncollided Flux Equation

The uncollided flux equation (Equation 4a)

LRT Ψu = q or �Ω ·�∇Ψu(�r,�Ω)+σt(�r)Ψu(�r,�Ω) = q(�r,�Ω) ,

can be re-written, along a given direction �Ω, as

dΨu(�r,�Ω)

ds
+σt(�r)Ψu(�r,�Ω) = q(�r,�Ω) , (5)

where�r =�r0 + s�Ω and�r0 is an origin point (i.e., a source point). Equation 5 can be solved

analytically for simple geometries or semi-analytically using ray-tracing, for more compli-

cated geometries.

1.1.2 Collided Flux Equation

Once Equation 5 has been solved, the uncollided flux solution Ψu is thus available through-

out the domain and the first collision source q1st can be computed as follows:

q1st(�r,�Ω) = HΨu = ∑
�

2�+1

4π
σs,�(�r)

�

∑
m=−�

Φu
�,m(�r)Y�,m(�Ω) (6)

where Φu denote the flux moments computed from the uncollided angular flux Ψu. Then,

one simply needs to solve Equation 4b, the equation for the collided component Ψc:

LSN Ψc = HΨc +HΨu = LSN Ψc = HΨc +q1st . (7)

Note that Equation 7 is similar in nature to Equation 1. An iterative technique (Source

Iteration) is employed:

LSN Ψc,(k+1) = HΨc,(k) +q1st .

Equation 7 gives the collided component of the angular flux. Standard discrete-ordinates

methods are used to solve Equation 7.
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1.1.3 From First-collision Source Treatment to Last-collision Source Treatment

The above uncollided flux treatment addresses ray effect issues in the uncollided flux solu-

tion. However, ray effects can also occur in the collision flux solution, for instance, when

there is a large distance from a small scatter source to a detector (e.g., neutrons streaming in

a duct). TREAT’s fuel motion monitoring system, with about 3m distance between the ho-

doscope and the centere of the core, clearly falls into this category. In a manner analogous

to the uncollided flux treatment, a last collided flux treatment can be employed to remove

ray effects in a detector response. The last collision source treatment is simply expressed

as the original transport equation, where the first-collided source due to the uncollided an-

gular flux and the collided source (obtained from a discrete ordinate solution) are known

(they come from the ray-tracing and the discrete-ordinate solution, previously described):

LRT Ψlast = HΨc +HΨu +q = qlast , (8)

That is, instead of using Ψc +Ψu as the final angular flux at the detector locations, we

perform one more ray-tracing using the total source qlast and then employ Ψlast as the final

answer. Note, we can also solve for the last collision angular flux Ψc,last as follows

LRT Ψc,last = HΨc +HΨu = qc,last . (9)

Equation 9 is simply obtained by subtracting Equation 8 and Equation 4a. Then

Ψlast = Ψc,last +Ψu .

1.2 Parallel Aspects of the Traditional Uncollided Flux Treatment

Most uncollided-flux algorithms track directly form each source point to a set of a few

points in each cell of the domain. The source volume assigned to each source point is ef-

fectively treated as vanishingly small, so that the angular flux at any other spatial point is

treated as a δ -function in the direction �Ω subtended by the two points. This traditional algo-

rithm does not scale well given a spatial domain decomposition: the process (or processor)

that owns a source point must execute O(N) work given N spatial cells. If the process that

owns the source point has knowledge of the entire domain, its works grows proportionally

to N. When sources are localized (in this case the very localized fuel sample(s) located

within the experimental vehicle in TREAT or the detectors in the hodoscope for the case of

the last-collision source treatment), then many processes not owning any source points stay
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idle. A simple workaround would be for processes not owning source points to ray-trace

once a ray enters their subdomains (this would be mandatory is the mesh is truly parallel

and not reproduced on any one processor). However, there are two deficiencies with this

approach:

1. The algorithm is partially sequential. Processes not owning a source point stay idle

until a ray has reached them.

2. As one moves further away from the source point, the ray density decreases, which

can cause inaccuracies.

However, independent research for development of a MOOSE-based method of charac-

teristics solver has developed a MOOSE application for parallel domain decomposed ray

tracing: SQUID. This work is at present unpublished, but is available in the MOOSE open

source repository [3]. The following section provides more detail about this application.

2 SQUID: A Parallel Ray-Tracing Application for Domain-
Decomposed Geometries

2.1 Overview

SQUID is a recently created MOOSE-based application developed by MIT & INL to per-

form ray-tracing in parallel for domain-decomposed geometries. SQUID is currently used

in reactor physics applications based on the Method of Characteristics (MOC) where ray

tracing is typically performed in Constructive Solid Geometries (CSG).

2.2 Enhancements Required for the Uncollided Flux Treatment

Currently, SQUID ray-traces through a domain described usig CSG and computes the angu-

lar flux attenuation using a given direction �Ω, a starting point�r0, and a termination distance
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D:

Ψu(�r0 + s�Ω,�Ω) = Ψu(�r0,�Ω)exp

(
−
∫ s

0
ds′σt(�r0 + s′�Ω)

)

+
∫ s

0
ds′′

(
q(�r0 + s′′�Ω,�Ω)exp

(
−
∫ s

s′′
ds′σt(�r0 + s′�Ω)

))
(10)

for 0 ≤ s ≤ D. In the uncollided flux treatment approach,�r0 will be any quadrature point

location within the external source volume (or surface if the external source is defined as a

surface source). The direction �Ω will be determined as

�Ω =
�r−�r0

‖�r−�r0‖

where�r is a spatial quadrature point in any cell of the domain. D = ‖�r−�r0‖.

Note that the external source term, q, and the total cross section can be arbitrarily space-

dependent. In MOC techniques, however, the source is often constant or linear per cell

and the cross section is cell-wise constant. At first, the fast neutron source burst from the

experimental vehicle in TREAT will be treated as piece-wise constant per spatial cell. If it

is important that the fast neutrons’ spatial variation within a finite element cell be accounted

for, a numerical quadrature integration along each ray segment will need to be implemented

in SQUID. The same remark applies to the spatially-dependent cross section. They are

typically constant per cell in MOC calculations. However, in multiphysics applications,

cross sections may spatially vary within the cell.

Algorithmically, this can be presented as follows:
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Algorithm 1 Ray-tracing for uncollided flux algorithm

1: procedure RAY-TRACING FOR ALL SOURCE POINTS

2: for each src qpt ∈ Nsrc do
3: Perform the ray-trace procedure (see below)

4: end for
5: end procedure

1: procedure RAY-TRACING FOR A GIVEN SOURCE POINT src qpt
2: for each cell K ∈ NK do
3: for each quadrature point qpt on outgoing faces of K, i.e., qpt ∈ Nqpt(∂K+)

do
4: This pair (src qpt ,qpt) define a ray

5: for each segment i in the ray do
6: Compute the uncollided angular flux

7: Accumulate the contribution of the uncollided angular to the flux mo-

ments

8: end for
9: end for

10: end for
11: end procedure

The contribution of the uncollided angular to the flux moments in each spatial cell is dis-

cussed in the next Section.

Enhancements needed to SQUID are:

1. Ray-tracing on a parallel FEM mesh;

2. Ray-tracing that accounts for source and cross-section variations within a cell.
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3 Finite-element Evaluation of the First-collided Scatter-
ing Source

Ray-tracing provides an estimation of the angular flux distribution. This must then be

converted into a first-collided source distribution (Equation 6)

q1st(�r,�Ω) = HΨu = ∑
�

2�+1

4π
σs,�(�r)

�

∑
m=−�

Φu
�,m(�r)Y�,m(�Ω) .

The key aspect here is the computation of the moments of the uncollided angular flux

Φu
�,m(�r) =

∫
4π

dΩΨu(�r,�Ω)Y�,m(�Ω)

These should be obtained using only the information available from the ray-tracing process.

Assume that the uncollided angular flux can be represented as an expansion in spatial basis

functions in each cell K and that the only angular information needed are the speherical

harmonic expansion of the first-collision source.

Ψu(�r,�Ω) = ∑
n

Cm2d
n ∑

j
Φu

jnϕ j(�r)Yn(�Ω)

for �r ∈ K. We have replaced, for brevity, the spherical harmonics subscripts (�,m) with

n, knowing that this is a bijection from n to the pair (�,m). The ϕ j’s are the FEM basis

function over element K; 1 ≤ j ≤ NDofs(K) where the number of degrees of freedom in cell

K, NDofs(K), is determine by the type of element and the FEM order of approximation. A

Galerkin approach would seek the flux moments coefficients by enforcing the following:

∫
K

d3r
∫

4π
dΩϕ j′(�r)Yn′

(
∑
n

Cm2d
n ∑

j
Φu

jnϕ j(�r)Yn(�Ω)−Ψu(�r,�Ω)

)
= 0

for all j′ and n′. A least-square version of this uses approximations to the above space-angle

integrals. These approximations are based on the requirements that the only information

available stems from the ray-tracing procedure.

For each cell K, we assign subvolumes with each ray that cuts cell K. Recall that a given

ray iq starts at source point i and extends to a quadrature point q located on the outgoing

faces for cell K. Each subvolume associated with a given ray also has a solid angle denoted

Δwiq.
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From these observations, the following linear system is posed for each cell K in order to

determine the FEM expansion coefficients for the flux moment associated with the spherical

harmonic function Yn′(�Ω), (0 ≤ n′ ≤ ANISO):

AΦu
n′ = yn′

where

A j′ j = ∑
i

∑
q

Δwiq

∫ sout,iq

sinc,iq

dss2ϕ j′(�r(s))ϕ j(�r(s))

yn′ = ∑
i

∑
q

Δwiq

∫ sout,iq

sinc,iq

dss2ϕ j′(�r(s))
∫

4π
dΩΨu(�r(s),�Ω)Yn′(�Ω)

where sinc,iq and sout,iq denote the entry/exit locations in cell K for ray iq. The element

volume d3r is been changed to dss2Δwiq (from the definition of the solid angle). Note

that we have summed over all source points i. Also note that the FEM basis functions ϕ
need to be evaluated along the rays. The spatial integrals contains an integrand of degree

2p+2 where p is the FEM basis degree. Therefore, we choose a Gauss-Lobatto quadrature

of order P = p+ 3 to numerically performed these integrals (recall that a Gauss-Lobatto

quadrature of order P exactly integrates a polynomial of degree 2P−3). By using a Gauss-

Lobatto quadrature, the entry and exit points of the ray, sinc,iq and sout,iq, are used in the

numerical evaluation of the integrals.

4 Conclusions

Modeling neutron transport from the center of the core to the fast neutron hodoscope at the

Transient Reactor Test Facility presents challenges to numerical simulation. Accurate cal-

culation of such streaming effects will be important in simulating the hodoscope response

for an experiment loaded in the center of the core. This report has summarized the findings

of research to overcome this issue, namely, an algorithm for semi-analytical calculation

of the uncollided flux source. Key to implementation within Rattlesnake is an algorithm

that provides parallel efficiency for a given spatial domain decomposition - SQUID. To

continue to develop first and last collision source terms, follow-up research will build off

of SQUID and apply if for streaming resolution calculations. In this report, the theory of

this implementation has been developed. In follow-up work in FY-2017, this theory will be

added to Rattlesnake and tested against available benchmarks.
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